Personal Area Network (PAN)
A personal area network (PAN) is a computer network used for communication among computer devices close to one person. Some examples of devices that may be used in a PAN are printers, fax machines, telephones, PDAs, or scanners. The reach of a PAN is typically within about 20-30 feet (approximately 4-6 Meters). PANs can be used for communication among the individual devices (intrapersonal communication), or for connecting to a higher level network and the Internet (an uplink).
Personal area networks may be wired with computer buses such as USB and FireWire. A wireless personal area network (WPAN) can also be made possible with network technologies such as IrDA and Bluetooth.
Local Area Network (LAN)
A network covering a small geographic area, like a home, office, or building. Current LANs are most likely to be based on Ethernet technology. For example, a library will have a wired or wireless LAN for users to interconnect local devices (e.g., printers and servers) connect to the internet. All of the PCs in the library are connected by category 5 (Cat5) cable, running the IEEE 802.3 protocol through a system of interconnection devices and eventually connect to the internet. The cables to the servers are on Cat 5e enhanced cable, which will support IEEE 802.3 at 1 Gbps.
The staff computers (bright green) can get to the color printer, checkout records, and the academic network and the Internet. All user computers can get to the Internet and the card catalog. Each workgroup can get to its local printer. Note that the printers are not accessible from outside their workgroup.
All interconnect devices must understand the network layer (layer 3), because they are handling multiple subnets (the different colors). Those inside the library, which have only 10/100 Mbps Ethernet connections to the user device and a Gigabit Ethernet connection to the central router, could be called "layer 3 switches" because they only have Ethernet interfaces and must understand IP. It would be more correct to call them access routers, where the router at the top is a distribution router that connects to the Internet and academic networks' customer access routers.
The staff have a VoIP network that also connects to both the Internet and the academic network. They could have paths to the central library system telephone switch, via the academic network. Since voice must have the highest priority, it is on the pink network. The VoIP protocols used, such as RSVP, are virtual circuits rather than connectionless forwarding paths.
Depending on the circumstance, the computers in the network might be connected using cables and hubs. Other networks might be connected strictly wirelessly. It depends on the number of PCs that you are trying to connect, the physical layout of your workspace, and the various needs of network. Not shown in this diagram, for example, is a wireless workstation used when shelving books.
The defining characteristics of LANs, in contrast to WANs (wide area networks), include their much higher data transfer rates, smaller geographic range, and lack of a need for leased telecommunication lines. Current Ethernet or other IEEE 802.3 LAN technologies operate at speeds up to 10 Gbit/s. This is the data transfer rate. IEEE has projects investigating the standardization of 100 Gbit/s, and possibly 40 Gbit/s. Inverse multiplexing is commonly used to build a faster aggregate from slower physical streams, such as bringing 4 Gbit/s aggregate stream into a computer or network element with four 1 Gbit/s interfaces.
Campus Area Network (CAN)
A network that connects two or more LANs but that is limited to a specific and contiguous geographical area such as a college campus, industrial complex, or a military base. A CAN, may be considered a type of MAN (metropolitan area network), but is generally limited to an area that is smaller than a typical MAN.
This term is most often used to discuss the implementation of networks for a contiguous area. For Ethernet based networks in the past, when layer 2 switching (i.e., bridging (networking) was cheaper than routing, campuses were good candidates for layer 2 networks, until they grew to very large size. Today, a campus may use a mixture of routing and bridging. The network elements used, called "campus switches", tend to be optimized to have many Ethernet-family (i.e., IEEE 802.3) interfaces rather than an arbitrary mixture of Ethernet and WAN interfaces.
Metropolitan Area Network (MAN)
A Metropolitan Area Network is a network that connects two or more Local Area Networks or Campus Area Networks together but does not extend beyond the boundaries of the immediate town, city, or metropolitan area. Multiple routers, switches & hubs are connected to create a MAN.
Wide Area Network (WAN)
A WAN is a data communications network that covers a relatively broad geographic area (i.e. one city to another and one country to another country) and that often uses transmission facilities provided by common carriers, such as telephone companies. WAN technologies generally function at the lower three layers of the OSI reference model: the physical layer, the data link layer, and the network layer.
Global Area Network (GAN)
Global area networks (GAN) specifications are in development by several groups, and there is no common definition. In general, however, a GAN is a model for supporting mobile communications across an arbitrary number of wireless LANs, satellite coverage areas, etc. The key challenge in mobile communications is "handing off" the user communications from one local coverage area to the next. In IEEE Project 802, this involves a succession of terrestrial Wireless local area networks (WLAN) [3]. INMARSAT has defined a satellite-based Broadband Global Area Network (BGAN).
IEEE mobility efforts focus on the data link layer and make assumptions about the media. Mobile IP is a network layer technique, developed by the IETF, which is independent of the media type and can run over different media while still keeping the connection.
No comments:
Post a Comment